ПРОГРАММНЫЕ ПРОДУКТЫ И СИСТЕМЫ

ПРИЛОЖЕНИЕ К МЕЖДУНАРОДНОМУ ЖУРНАЛУ

ПРОБЛЕМЫ ТЕОРИИ И ПРАКТИКИ УПРАВЛЕНИЯ

2005
ISSN 0236-235X

ЗАЩИТА ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

ОЦЕНКА КАЧЕСТВА КОМПОНЕНТОВ СИСТЕМЫ

МЕТОДЫ ИДЕНТИФИКАЦИИ СЛОЖНЫХ ОБЪЕКТОВ

ИСПОЛЬЗОВАНИЕ XML-ТЕХНОЛОГИЙ
Информационные технологии проектирования баз знаний: проблемы создания и защиты интеллектуальной собственности

С.С. Ульянов

С точки зрения инженерного менеджмента создание интеллектуальной собственности (ИС) на информационные технологии высокого уровня, развитые на основе соответствующих интеллектуальных продуктов (ИП), приобретают в 21 столетии особую важность [1-6]. Всемирная организация интеллектуальной собственности (ВОИС) показала, что от 90 до 95% всех всенародных изобретений изложены в патентных документах. Дополнительно Европейский патентный офис (ЕПО) раскрыл, что “патенты показывают множество решений технических проблем и представляют неистощимый источник информации: более 80% технических знаний человечества описаны в патентной литературе”. Патенты являются важным инструментом для процесса создания интеллектуальных технологий, которые компании могут использовать для достижения своих стратегических целей. Патентование алгоритмов и программного обеспечения в области вычислений является, в свою очередь, базисом для разработки и практического исследования технологий формирования БЗ, необходимых для информационных технологий проектирования и получения конкурентоспособных интеллектуальных систем и новых информационных технологий проектирования [6]. Анализ показал, что существует более глубокое проникновение новых идей в решениях для своих патентных портфелей. Поэтому лидирующие международные компании (особенно в США, Японии, Великобритании, Индии, Германии, Франции, Италии, Голландии, Российской Федерации и др.) концентрируют внимание на создании интеллектуального барьера для разработки информационной технологии; на развитии гибкой структуры технологии, принимающей во внимание развитие и достижения в смежных областях (типа технологий информатики, программно-аппаратной поддержки процессов проектирования и индустриальных процессов производства и т.д.); на создании программно-аппаратной поддержки для соответствующей индустриальной и информационной среды.

По крайней мере, в течение 5-10 лет для разработки и применения высоких технологий необходимы рисковые инвестиции капитала, и в течение этого процесса возникает объективная потребность в защите ИС против индустриального шпионажа и пиратства. Практика показывает, что лучшим методом защиты является создание ИС на всех стадиях разработки [1-6].

Например, рассмотрим новую наукоемкую компьютерную технологию, относящуюся к проектированию строительства и архитектуры квантового компьютера. По оценкам экспертов, первый индустриальный образец такого вида компьютеров ожидается приблизительно через 35-50 лет (стоимость разработки технологии на два порядка превышает стоимость проекта по созданию первой атомной бомбы). В случае успеха в решении данной проблемы один квантовый компьютер с памятью из 1000 атомов будет достаточен, чтобы содержать информацию, известную во всей вселенной, а с помощью квантовых алгоритмов обрабатывать огромные файлы данных информации примерно 2^100 бит и решать неразрешимые классическими методами вычислительные проблемы: криптография, сверхбыстрое кодирование, факторизация целочисленных данных при секретном кодировании, быстрый поиск в неструктурированных БД, робастные надежные коммуникации с квантовыми каналами передачи информации. Такие сложные вычислительные проблемы не могут быть решены на классическом персональном компьютере или их решение обойдется слишком дорого как в вычислительном процессе, так и в коммерческом плане.

По указанным причинам ведущими мировыми компаниями и НИИ в области исследования информационных технологий большое внимание уделяется проектированию и защите информационной технологии. В течение последних 15-20 лет многие корпорации и ведущие университеты подготовили определенные предложения по развитию ИС и ее защите [7]. Для уменьшения риска теперь особое внимание уделяется взаимосвязи между бизнес-программами, бизнес-планами и ИС на ИП как составляющих основу соответствующих программ.

Анализ данных предложений и существующий практический опыт в создании ИС на ИП показал, что эффективность процесса зависит от степени развития научно-технического прогресса в проблемно-ориентированной области. Путь защиты ИС на ИП по существу зависит от научно-технических основ, развитых в этих деловых областях.

В данной статье рассматриваются некоторые проблемы развития ИС в конкретной проблемно-

В условиях существующего в мире законодательства и опыта его применения есть некоторые особенности и трудности в процессе формирования и защиты ИС на ИП. Причина является динамическое развитие технологий высокого уровня, из-за чего эволюционное развитие соответствующего законодательства оказывается часто устаревшим.

Патент на ИП является высшей формой защиты ИС. Однако в связи с развитием высоких информационных технологий часто возникает некоторый объективный конфликт между формальным определением патентоспособности и реальной объективной новизны высокотехнологичного ИП. Этот конфликт особенно отчетлив в определении патентоспособности технологий, ориентированных на передовые научно-технические достижения.
ния, в частности технологий, использующих новые концепции теории информатики и искусственного интеллекта или новые типы вычислений (многие вычисления, нечеткие алгоритмы управления и т.д.). Конфликт был успешно решен Патентным офисом США, данному точному определению патентоспособности программного обеспечения и математических алгоритмов [2,3,7].

Предлагаем рассмотреть один из вариантов определения патентоспособности высокотехнологичного ИП — многовариантные и квантовые многократные вычисления. Определение патентоспособности ИП, относящегося к разряду высокотехнологичного, как правило, бывает трудным для экспертов, и поэтому часто многие разработчики высокотехнологичного ИП не обращают должного внимания на создание ИС на ИП уже в начальной стадии разработки.

В качестве примера можно упомянуть автора известной работы по нечеткой математике и нечеткому управлению Лотфи Заде, который, не придав в 1965–1979 гг. должного значения необходимости оформить юридически ИС в виде патента на метод нечеткого управления и на структуру нечеткой системы управления. В результате Т. Ямакава (Технологический институт, Фукуока, Кюоу, Япония), используя основы идеи Л. Заде, разработал 2 типа новых аналоговых аппаратных средств для обработки нечеткой информации (использующих логический вывод Л. Заде) и продемонстрировал в 1987 г. опытный образец нечеткого регулятора. NASA использовало патент и опытный образец в течение двух лет. Фирма "Омрён" (Япония) получила прибыль в 3,3 млрд. американских долларов от производства промышленных систем управления на базе нечетких чисел. При этом фирма "Омрён" в 1991 г. приобрела у Т. Ямакавы 6 патентов и в 1992 г. производила до 10 различных видов нечетких контроллеров, а на презентации разработки фирмы "Омрён" были представлены 60 демонстрационных образцов продукции, основанных на нечеткой логике Л. Заде [13].

Одним из компетентных примеров современного подхода к защите ИС в области высокой информационной технологии может служить патент Л.К. Гро́вера на квантовый поисковый алгоритм (для поиска в существенно неструктурированных БД). В этом случае такой ИП, как квантовый алгоритм (на основании новизны и прикладной ценности) имеет повышенную патентоспособность, поскольку основан на высокотехнологичном ИП и математическом инструментарии типа квантовых вычислений и является новым шагом в научно-информационной технологии [14].

Как мы можем видеть из рисунка 1, изменение типов и моделей вычислений (шаги 1-3), приводит в результате к последовательному увеличению уровня интеллектуальности проектируемой интеллектуальной системы управления (ИСУ). Основанная на этом подходе ИС была создана в форме патентов [15-18].

После формирования ИС на ИП требуется создание торговой марки (ТМ) на индустриальный образец. В нашем примере это оптимизатор Б3 с новыми видами вычисления, основанный на разработанной информационной технологии. В данном случае прежде всего необходимо создать ТМ на основные компоненты технологии. При этом ТМ должна включать также некоторое семантическое описание содержания ИП.

Особенности информационной технологии проектирования

Как упоминалось выше, современные технологии проектирования, основанные на высокотехнологическом ИП, содержат в сконцентрированном виде ценную информацию и результаты, заимствованные или вновь разработанные из многих областей науки и техники. Такое создание технологии представляет продолжительный творческий процесс. Помимо общих законов, описывающих формирование ИП, существует еще и набор дополнительных слабоформализованных факторов, вытекающих из конкретной прикладной области. Один из типичных примеров — развитие ИП reportной ИИСУ.

Проведенные исследования [19-22] показывают, что ИСУ имеют следующие особенности и преимущества:

- содержат основные преимущества традиционных систем управления с обратной связью типа устойчивости, управляемости и т.д., которые составляют научную базу для технологии проектирования ИСУ;

- имеют оптимальную Б3 (с точки зрения данного критерия качества управления), а принцип неразрушения нижнего уровня управления также имеет возможность корректировки и адаптации к ситуации управления в условиях неопределенности;

- гарантируют требуемый уровень работоспособности управления на основе разработанной Б3;

- являются открытыми системами и позволяют вводить дополнительные критерии качества управления и ограничения на качественные характеристики процессов управления.

Внесенные в список особенности технологии проектирования ИСУ характеризуют данную технологию как первый важнейший уровень и показывают, что он имеет элементы сущесвенной новизны (как на отдельные компоненты, так и на структурном уровне в целом).

На рисунке 2 показан процесс проектирования рабочей структуры ИСУ (научно-технические особенности представлены в [8]).

Как видим, основой разработки высокого уровня технологии является высокая информационная технология, ИП, сделанный в области мате-
матики (алгоритмы, программы), физики (квантовые вычисления), биофизики (ДНК-вычисления) и т.д.

Рассмотрим роль отмеченных особенностей в формировании информационной технологии как обобщенного ИП, содержащего фрагменты отдельных независимых ИП.

Одним из существенных признаков новизны ИП является его патентоспособность, которая влечет за собой необходимость его защиты.

ИС для этапа технологии

Рассмотрим конкретную прикладную проблему для современной теории управления: проектирование робастной Б3 ИНСУ.

Основная проблема состоит в оптимизации процесса проектирования робастной Б3 для НК (рис. 1). Опишем опыт формирования ИС для конкретного этапа технологии проектирования Б3.

Как было упомянуто, процесс извлечения, обработки, и формирования знаний представляет одну из центральных проблем теории искусственного интеллекта. Эксперт в процессе проектирования Б3 для ИНСУ передает собственные знания в Б3 и, следовательно, возникает проблема объективизации Б3.

С новыми методами вычисления типа матричных вычислений (основанных на генетических алгоритмах (ГА) и нейронных системах), книжных и математических вычислений можно формализовать и оптимизировать объектный процесс извлечения Б3, обработки и формирования Б3, не зависящую от субъективных знаний эксперта [8,9].

Рассмотрим отдельные особенности процесса проектирования Б3, представляющую центральную проблему в искусственном интеллекте.

1. Отличительной особенностью ИСУ является наличие робастности. При этом каждый интеллектуальный уровень системы управления должен соответствовать уровню робастности. Для увеличения робастности ИСУ был разработан "принцип обратной интеллектуальной связи" [8,9]. Это позволяет использовать информацию, вычисленную из динамического поведения классического ПИД-регулятора и из объекта управления (ОУ) для строения объектной Б3 проектируемого НК.

2. Современные технологии проектирования ИСУ, базирующиеся на нейронной сети (НСС) как инструментарии процесса обучения. В общем случае НСС не гарантирует достижение желательной (проектируемой) точности аппроксимации обучающего сигнала и, как следствие, часто дает увеличение чувствительности динамического поведения ОУ (уменьшение робастности). Это демонстрировалось на различных классах стохастических возмущений и ОУ [23]. Для устранения дефектов ИНС был разработан программный инструментарий, основанный на ГА [8]. Это позволило проектировать необходимый уровень точности аппроксимации обучающего сигнала и гарантировать его достижимость.

3. Для данного этапа проектирования робастной Б3 для ИНСУ доказан физический принцип управления, позволяющий объединить различные критерии качества управления и найти соответствие между требуемым уровнем робастности управления и требуемой ценностью информации, включенной в соответствующие правила управления БЗ. Это позволяет определить необходимый уровень интеллектуальности и его соответствия уровню робастности управления в зависимости от сложности конкретной проблемы управления.

Кратко рассмотрим основные физические принципы, позволяющие устанавливать взаимосвязь между качественными характеристиками динамического поведения ОУ — устойчивостью, управляемостью и робастностью управления. Для этой цели использовались информационный и гедонидинамический подходы, соединяющие динамическую устойчивость (функция Липунова), управляемость и робастность однородным аналитическим условием.

Рассмотрим динамическую систему объекта управления, описанную уравнением

\[
\frac{dq}{dt} = \varphi(q, t, u),
\]

где \(q \) — вектор обобщенных координат, опиравочный динамический отсчет ОУ; \(u \) — управляющие величины; \(t \) — время.

Необходимые и достаточные условия асимптотической устойчивости динамической системы, описанной уравнением (1), определены ограничениями на функцию Липунова, которая имеет два важных свойства:

1) строго положительная функция от обобщенных координат, \(V > 0 \);
2) полная производная во времени от функции Липунова должна быть меньше или равна нулю (неположительная функция) \(\frac{dV}{dt} \leq 0 \).
Согласно внесенным в список требованиям к функции Ляпунова, мы выберем в качестве функции Ляпунова следующую функцию:

\[
V = \frac{1}{2} \sum_{i=1}^{n} q_i^2 + \frac{1}{2} S^2,
\]

где \(S = S_p - S_e \) — производство энтропии в открытой системе; \(S_e \) — энтропия ОУ, \(S_p \) — энтропия ПИД-контроллера.

Из уравнения (2) видно, что первое условие выполнено автоматически. Мы требуем выполнения второго условия \(\frac{dV}{dt} \leq 0 \). Полная производная во времени от функции Ляпунова, описанной выше, имеет вид:

\[
\frac{dV}{dt} = \sum_{i=1}^{n} 2q_i \dot{q}_i + \frac{1}{2} \frac{dS}{dt} = \sum_{i=1}^{n} q_i \dot{q}_i + SS = \sum_{i=1}^{n} q_i \cdot \varphi(q_i, t, u) + (S_p - S_e) (S_p - S_e) \leq 0.
\]

Таким образом, имеем [см. 19]:

\[
\frac{dV}{dt} = \sum_{i=1}^{n} q_i \cdot \varphi(q_i, t, u) + \frac{dS}{dt} \leq 0.
\]

На рисунке 3 показана взаимосвязь между функцией Ляпунова и производством энтропии в ОУ и в системе управления.

Уравнение (3) описывает физический закон качества управления и объединяет различные меры качества управления типа устойчивость, управляемость и робастность.

Таким образом, взаимосвязь между устойчивостью (по Ляпунову) и робастностью, описанной уравнением (3), является основным физическим законом для проектирования ИСУ. Этот закон — основа для прикладной технологии проектирования БЗ робастной ИСУ (с различными интеллектуальными уровнями), основанный на мягких вычислениях.

4. Мягкие вычисления создают возможность для развития универсального аппроксиматора обучающего сигнала в ИСУ, который выдает необходимую минимальную (ценную) информацию о рациональном поведении ОУ.

Таким образом, информационная технология проектирования включает математически доказанные и физически обоснованные характеристики качества процессов управления. Поэтому определение робастности, столь важной для процессов управления, может быть корректно определено через устойчивость и управляемость (см. рис. 4) и содержит минималь необходимой начальной информации для достижения и сохранения требуемого качества управления.

В свою очередь, метод описания процесса включения данных, обработки информации и формирования БЗ представляет высокотехнологичный ИП, требующий создания ИС и его защиту.

Процесс проектирования БЗ реализован новым видом интеллектуальной обратной связи. На рисунке 4 этот процесс показан в деталях.

Новизна данного процесса позволяет говорить о его патентоспособности. Инструментарий проектирования и оптимизации БЗ также является патентоспособным. Изменяя модели описания ОУ (рис. 4), мы получаем разнообразные варианты универсального процесса исследования, обработки информации и формирования робастной БЗ для ИСУ данного класса.

Для защиты ИП прежде всего необходимо обозначить типы новизны в разработанном ИП.

Во-первых, ИП состоит из структуры ИСУ с новым типом интеллектуальной обратной связи и включает новый тип ГА с дискретными или непрерывными ограничениями на переменные. Структура содержит новый оптимизатор на мягких вычислениях (SOC) для аппроксимации обучающего сигнала (ОС) и формирования БЗ для НК.

Новый вид вычисления (в прикладной математике) и физический закон управления, основанный на принципе минимума производства энтропии, как в ОУ, так и в традиционном регуляторе являются объективными основами для процесса проектирования БЗ в НК. Поэтому на основе разработанной структуры ИСУ мы можем создавать ИС, которая защищена патентами [15-18].
Во-вторых, вычислительная мощность новых видов вычислений типа мягких вычислений позволила развивать программную поддержку процессов проектирования БЗ.

Под программным инструментарием понимается последовательное применение ГА для грубого и точного регулирования параметров функции принадлежности в продукционных правилах БЗ, и для оптимизации ее структуры. Способ использования данного продукта рассмотрен в [8]. Таким образом, программный инструментарий представляет патентоспособный ИП.

Процесс проектирования БЗ может быть разделен на два подэтапа: 1) обработка данных и формирование знаний; 2) программная и инструментальная поддержка процесса проектирования с целью оптимизации структуры БЗ.

Таким образом, создание ИС на ИП возможно при условии новизны компонентов в системе моделирования или в программной инструментальной поддержке.

Следующим важным шагом в процессе юридической защиты ИП является создание TM на индустриальный образец. В таблице показан процесс формирования TM для разработанного инструментария.

Семантическое содержание оптимизатора БЗ включено в название их TM. Таким образом, логический результат разработанной TM таков [24]:

1. SCOпрKB™
2. QCпрKB™
3. QSCпрKB™

Следующей стадией защиты ИС является создание защиты авторского права на копирование созданного ИП.

Таблица

<table>
<thead>
<tr>
<th>№</th>
<th>Вычисления</th>
<th>Сокращения</th>
<th>Действия и сокращения</th>
<th>Объект оптимизации</th>
<th>TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Мягкие вычисления (СМ)</td>
<td>Оптимизация (выбирает)</td>
<td>База знаний (КВ)</td>
<td>SCOпрKB™</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Квантовые вычисления (КС)</td>
<td>Оптимизация (выбирает)</td>
<td>База знаний (КВ)</td>
<td>QCпрKB™</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Мягкие квантовые вычисления (QCM)</td>
<td>Оптимизация (выбирает)</td>
<td>База знаний (КВ)</td>
<td>QSCпрKB™</td>
<td></td>
</tr>
</tbody>
</table>

Таким образом, на данном примере мы показали, что создание однородной цепи "Патент—TM—Авторское право" является необходимым и достаточным условием юридической и правовой защиты программного ИП.

Автор выражает благодарность Заде Л.А., Алею Р.А., Алею Ф.Т., Джамшиди М., Литвинцовой Л.В., Язедину А.В., Папифилову С.А за их помощь и плодотворные критические замечания при подготовке данной публикации.

Список литературы