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Soft computing simulation design of intelligent control systems
in micro-nano-robotics and mechatronics

S. A. Panfilov, S. V. Ulyanov, I. Kurawaki, V. S. Ulyanov, L. V. Litvintseva, G. G. Rizzotto

Abstract The soft computing simulation design method-
ology of intelligent control system for mobile micro-nano-
robots based on modeling of non-linear dissipative equa-
tions of robots motion with a minimum entropy produc-
tion is described. It includes hierarchical levels for
description of dynamic behavior of mobile micro-nano-
robots based on laws of microphysics, quantum logic of
intelligent dynamic behavior of control objects, optimal
control of states and dynamic system theory of mechanical
motion. The description of a thermodynamic intelligent
behavior (with minimum entropy production) of control
objects (robots) and their interrelations with Lyapunov
stability conditions are introduced. The role of soft
computing on the basis of GA with a fitness function as
a minimum entropy production for intelligent control of
mobile micro-nano-robots is discussed.

Key words Micro-nano robots, Soft computing, Entropy
production rate, Lyapunov stability
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Introduction

Micromechatronics is the synergetic integration of both
mechanical and electronic systems based on scaling effects
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in the micro world [6]. The minimum feature size of these
structures is on the order of pm and the maximum total
size is on the order of mm [13]. When separations between
objects are small enough, certain thermodynamics and
quantum effects become manifestly significant even if the
masses of the objects are too large by quantum standards
[11]. When the control objects are minituarized, physical
phenomenon is different from macroworld. Viscosity and
friction forces become more effective than an inertial force
and it is needed to take into account thermodynamic
effects from dissipative processes. As the dimensions
between components of micro-mechanical systems de-
crease, the need for better understanding of interactions
between micro-surfaces at small separations is appeared.
The Casimir effect, for example, is the attractive pressure
between two flat parallel plates of solids that arises from
quantum fluctuations in the ground state of the electro-
magnetic field. The magnitude of this pressure varies as
the inverse fourth power of the separation between the
plates. This force has all quantum mechanical properties
in origin and may be attractive or repulsive, depending on
the geometry of the surfaces. At the 20 nm separation
between two metallic plates, the attraction is approxi-
mately 0.08 atmosphere [16]. For this case the parallel
plate Casimir pressure is identical to the retarded van der
Waals attractive pressure between two parallel plates.
These effects are very important for describing of a micro
manipulation based on the microphysics. In these cases
scaling effects require different approaches to micro
mechatronics and conventional mechatronics [6, 8].

In this paper we describe some particularities of mod-
eling methodology in R & D of mobile micro-nano-robots.
Simulation results of intelligent thermodynamic behavior
(with minimum entropy production in a control object
and a control system) of micro robot in a fluid [5, 17] are
introduced.

2

Modeling of mobile micro-robots

as thermodynamic open systems

Consider some peculiarities and typical examples of
mobile micro-robots modeling in accordance with the
developed methodology.

Entropy production and dynamic stability

of a micro-robot in a fluid

Consider a mobile micro-robot (MMR) (prototype of that
was developed in [5] and has a new steering mechanism)
as an open thermodynamic macro physical system. The
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mathematical model of the micro-robot as a mechanical
system in a fluid is described as following [5]:

mix; + Cd§A1|5€1|5C1 + Ki(x1 — x0 — L0o)
— Ky (xy — x1 — L0y) = (1) + &(¢),

ma% + Cab Asfiali + K (2 — 31 — 16y) (1)
—Ks(xs —x; — 130,) =0

ma¥s + Cab Aslislis + K (s — x2 — 102) = 0

where 0,41 = —10, +%ﬁ(xn+1 —x,) and m; = 1.6 x

1077 kg; my = 1.4 x 1076 kg; m3 = 2.4 x 107° kg;
L =20x 107 m; L, =40x107° m; 3 =4.0 x 107 m;
K; =61.1 N/m; K; = 13.7 N/m; K3 = 23.5 N/m; A; = 4.0
x107° m?; A, = 2.4 x 107> m?; A3 = 4.0 x 107> m?;
Cq = 1.12; p = 1000 kg/m?; £(¢) - stochastic excitation
(white noise).

The thermodynamic equation for the entropy produc-
tion of the MMR is defined from Eq. (1) as

ds; > o o .
5 = 2 CasAninlis, i=1,2.3, (2)
n=1

and the Lyapunov function is described as follows [17]

xz 3 K'(X'—X'_1 —1'0'_1)2 Sz
V= haci i\Xi i iVi >
Zm 2 +; 2 3

i=1 =]

(3)
where S = §; — S and S, is the entropy of controller
with torque 7 in Eq. (1).

For the stability analysis and computer simulation of a
dynamic behavior of the MMR Eq. (1) is written in tra-
ditional form of differential equations as x; = ¢(x;, 7, t).
Here we use the following relation between Lyapunov
function and the entropy production for the micro-robot
as an open system [17]

dv i ds,
G = Dot ) (GG <o

(4)

From Eq. (4) the necessary and sufficient conditions for
Lyapunov stability of the MMR is expressed as follows:

ds, ds;\ ds. ds:
ot o< 599G -0 ) 5>

(5)

i.e., the stability of a MMR’s motion can be achieved with
“negentropy” (by Brilloun’s terminology) S, and the
change of entropy dS;/dt in motion of the MMR must be
subtracted from the change of entropy dS./dt in a control
system in accordance with Eq. (5).

Figure 1 shows the thermodynamic behavior of the
MMR with intelligent and conventional PID-controller
accordingly. For the simulation of a dynamic behavior the
GA (genetic algorithm) with the fitness function as the

minimum entropy production in the motion of the micro-
robot and in the PID-controller was used. Figures 1 and 2
show that according to the conditions (5) for Lyapunov
stability the intelligent behavior of the MMR with the
principle of minimum entropy production can be
achieved.

3

Mobile nano-robots in a quantum stochastic micro world
Mobile nano-robots (MNR’s) are widely used in medicine
and biology [4]. MNR’s size and working conditions of
artificial life [17] are compared in this case with a quantum
molecular level [11]. A non-equilibrium stable dynamic
behavior of a MNR may be realized through a self-orga-
nization mechanism between the MNR motion and a fluid
(biological) medium. For the description of this self-or-
ganization mechanism in non-equilibrium systems

(as MNR’s in a fluid medium) heat fluctuations and
dissipative quantum processes must be taken into account
[10, 11].

In this article we will consider the intermediate case - a
control of a MMR’s motion in a quantum bio-molecular
medium. In this case the cooperative system “a mobile
micro-robot + a quantum bio-molecular medium” can be
considered as a mobile nano-robot (MNR).

The use of MMR’s (at a classical corpuscular level) in
bio-molecular medium (at a quantum wave macro-physic
level) leads to the necessity of investigation of a correlation
between classical and quantum levels of a cooperation
system.

3.1

Qualitative description of MNR dynamic problem

In this article we present in particular the models de-
scribing biological membranes and a MMR’s dynamics in
a quantum fluid. The molecular membrane that bounds
both a cytoplasm of a cell as a whole and individual
organelles contained within it is a structure common to all
living systems and biologically inspired evolutionary
systems. All communication of a cell or an organelle with
its environment is carried out across the membrane: that
includes ion transport processes, diffusive transport of
small molecules (such as H,O and CO,), as well as a
transport of large molecules such as lipoprotein [2]. Many
biologically inspired evolutionary systems and biological
processes are associated with an energy transfer through
protein, where this energy is realized by a hydrolysis of
adenosine triphosphate (ATP) [3, 19].

We will discuss the possibility of a phonon mechanism
creation as the analogy to Davydov soliton excitation [3,
19] on the basis of a control of a MMR’s vibration in a
fluid biological medium (as an analogy of Eq. (1)) for a
transfer without loss of energy and for a transport of the
MMR itself in biologically inspired evolutionary systems.

We will introduce a qualitative analysis of the MMR’s
dynamic behavior on the basis of physical representations
(quantum mechanics and thermodynamics) by Schro-
dinger and von Neumann. The mathematical background
of this qualitative analysis is mathematical models of
quantum mechanics (soliton-like solutions) and non-
equilibrium thermodynamics (self-organization structures
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Fig. 1a-h. Simulation results of dynamic and thermodynamic behavior of MMR under different control strategies. Curve 1 - GA-PID -
controller with minimum of entropy production, curve 2 - Conventional PID controller

Fig. 2a-c. Simulation results of dynamic and thermodynamic behavior of MMR under different control strategies in 3d space. Curve
1 - GA-PID - controller with minimum of entropy production, curve 2 - Conventional PID controller
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through chaos and dissipative processes in open dynamic
systems with entropy exchange [11, 17]). In the general
case a new (Lie-admissible non-Hermitian isotopic)
non-linear model of quantum mechanics with entropy
exchange can be used [7, 17] (see Appendix for details). A
characteristic feature of this investigations is the study of a
cooperative self-organization mechanism for the creation
of artificial life conditions of a biological MMR on the
basis of a soft computing for the control of a correlation
between a classical level (Newton mechanics) and a
quantum macro-physic level (molecular fluid medium).

The mathematical model of a MMR’s interaction with a
quantum fluid medium is developed. Quantum micro- and
nano-robots and their interactions with stochastic envi-
ronments of quantum systems are described. Equations of
cooperative system motion with entropy exchange based
on non-linear stochastic Schrédinger equations in [11] are
in detail described. A quantum robot in general case is a
mobile quantum system that includes an on-board quan-
tum computer and ancillary systems [1]. The study of
quantum computation based on the increased efficiency of
quantum computation compared to classical computation
for solving some important intelligent control problems in
[18] are discussed. The simulation results of MNR’s
motion are examined.

3.2

Biological, physical and mathematical models

We will discuss a thermodynamic interaction between a
quantum macro-physical (molecular membranes) level
and a classical level in mechanical motion of a cooperative
system (a MMR and a fluid medium) [17].

3.2.1

Biological membrane models

A membrane is essentially a liquid bilayer with a variety of
other molecules (e.g., globular proteins, cholostelor) em-
bedded therein and forming a complex interacting system.
Such membrane macromolecules as o-helices and f sheets
are instrumental in transmembrane transport processes
[2, 3, 19]. The most numerous membrane constituents,
phospholipids, consist of a polar head group based on the
phosphate and attached through a glycerol moiety to two
hydrocarbon chains containing 14-20 carbon atoms [2].
Thus, in a water the phospholipid forms a bilayered lam-
ina 40-50 A thick, with the polar head group facing out-
wards and tails inwards, away from the water (Fig. 3 [2]).
The electric charge in the head group makes it hydro-
phobic, while the oily hydrocarbon chains are hydropho-
bic. The lamina close into stable, spherical vesicles to
completely isolate the chains from the membrane’s
hydrated environment (Fig. 4 [2]). Each of the two lipid
layers of the membrane may be have an independent
phospholipid composition. The membranes’s rigidity and
configuration change with the temperature. At a narrow
temperature rate, in particular, the membrane undergoes a
sudden pronounced loss in packing density becoming
more fluid-like above this characteristic temperature T,
with individual lipids undergoing Brownian motion and
exchanging with other on the order of a microsecond.

Hydrophilic
lipid head
Hydrophobic
& Tipid tail
50-100
o
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transport

Fig. 3. Schematic illustration of the membrane as a lipid bilayer

Fig. 4. Graphical representation of the spherical membrane

The fluid-like quality of the membrane is enhanced by
the presence of cholesterol molecules amidst hydrocarbon
chains, since they reduce chain-chain attraction. Meta-
bolically active biological cells should exhibit, according
Frolich theory, long-range coherence manifested by Bose
condensation of longitudinal elastic vibrations of mem-
brane dipoles into a narrow (microwave) frequency band.
The ensuing dynamical pictures involve in this case high-
frequency longitudinal dipolar oscillations of membrane
segments with displacements perpendicular to the surface.
Their frequency can be estimated as w = (3-8)10'! Hz.
A potential difference of about 10-100 mV is known to
exist across biological membranes resulting in an electric
state in parts of the membrane. Dipole oscillations within
large molecules such as DNA, RNA, proteins, and hydro-
gen bounded amides are capable in this range. The lipid
head groups of the cell membrane are less massive and
appear to have fewer degrees of freedom than the tail
groups. They are also more regular in their structure.

3.2.2

Physical model

It is expected that the system comprised of the membrane
itself, the energy pumps, and the environment can be ad-
equately described by an appropriate Hamiltonian. The
membrane will be modeled as a collection of phospholipids.
The hydrocarbon tails can be considered separately from
the lipid heads, which is based on the hierarchy of relax-
ation times. In this case the tails predominantly determine



the equilibrium phase of the membrane while the heads are
crucial to the dynamics of the system. Lipid head groups
exert lateral pressure on the tails, thereby affecting the
equilibrium properties of the membranes as whole. In dy-
namical picture the tail appears, however, as nearly “fro-
zen” and they determine the equilibrium spacings between
the head groups as a function of a temperature. A model
Hamiltonian is proposed in [2] that involves the oscilla-
tions of both the lipid head groups and hydrocarbon chains
of membrane. Opposite limiting case (to Frélich theory)
assume the long-wavelength approximation and neglect the
dispersion in the non-linear part of Hamiltonian (Davydov
region). Following Davydov’s idea [3] one can take into
account the coupling between the amide-I vibration and the
acoustic phonons on the lattice. Through this coupling
non-linear terms appear in the equations of motion. In this
way the energy can be transported in solitary wave.
Davydov [3] has shown that the localized collective state on
the solitary wave type (soliton) exists in quasi one-
dimensional (1D) molecular chains by balancing the effects
of non-linearity against those of dispersion. The Davydov
soliton travels as a solitary wave retaining its form and
energy without dissipation. It usually exhibits remarkable
stability and particle properties even after collision.

In this paper we will discuss the possibility of preparing
phonon mechanism analogy of soliton excitation on basis of
a MMR’s vibration in a quantum fluid medium. Firstly, let
us discuss a main idea of Davydov model of soliton.

In the quasicontinuous approximation we introduce
the displacement f(x, t) of molecules from equilibrium
in the language of coherent states and the probability
amplitude W(x, t) of a soliton excitation. Then the
following [17, 19] below equation can be obtained:

i " At S~ 2 L)) — o

_l at a axz Xaax x, \ x, = s
)

2 T b - =0, ()

B L Vi i

where A = Z+ w — 2], E = E — D, and E is the excitation
energy of an isolated molecule, D is the deformation
energy, J is the transfer integral, M is the molecular mass,
a is a lattice constant, v§ = a’w/M, w is the longitudinal
elasticity of the chain, y is the coupling constant between
the intermolecular excitation and molecular displacement.
Under suitable initial conditions Davydov gave [3] a
traveling solution of Egs. (6), (7) as

¥ (x, 1)|* = ?sinh2 [u(x — xo — vt)],
u=ylaoj(1 5]

ﬁ(xv t) = -

(8)

0o

tanh[u(x — xo — vt], s* =

O<N| S

b
o(l —s?)
(9)
Remark 1 Equation (6) describes a soliton motion (8) and

has an external force as a non-linear parametrical excita-
tion f(x, t) (displacement of molecules from equilibrium).

Below, we will use this idea for preparing a phonon
mechanism analogy (7) of a soliton excitation on the basis
of a biological MNR vibration, and we will consider two
cases: a without loss energy transfer and a transport of a
MNR itself in a soliton body in a biologically inspired
evolution system.

3.23

Mathematical model of a mobile micro-robot’s

interaction with a fluid quantum medium

Consider one prototype of a MMR which is the MMR in a
water (double-fin fish robot) that possesses a pair of fins
and moves them symmetrically [5]. Therefore, the mo-
mentum of this robot is canceled and the tendency to move
straight ahead is improved. Equations of motion of a co-
operative system with entropy exchange [17] are following:
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- MMR motion (on classical level):

dvo(§)
3 = u(t) (10)

- MMR coupled motion (on quantum level in Schrodinger
picture) (non-linear Schrédinger-type equation with
dissipative processes and entropy exchange, obtained
from quantum postulat [11]):

S RV
ot  2m Ox?

E+F(&ELS) +

+ {Vo(x) + F(&, &, 1, S)[x — &(1)]
Classical motion

+ ? (In¥ — (In¥)) ¥ — ZXa%‘P — H¥

(11)

- Fluid medium (on quantum level) (non-linear Schré-
dinger-type equation with dissipative processes)

. a(x aza 2 Zh
lha— <E+AE)O(—R0](CL))@—G|O(| OC—EZQ
Zya 0 2
B 200y 12
R A varmkd (12)

Parameters E, AE, Ry, J(®),G,Z,y and 7y in [17] are
defined. If we use the simple phase-shift transformation
o = exp{—(Z/2)t}¥;(x, t) then obtain new simple form of
equation:
., 0¥

h_
o

'Y,

= (E + AE)lPI — Ro](a)) axz —

L AR

2ya 0 ‘P|2

(13)

- Entropy exchange (between a quantum fluid medium
and MMR):

S = Spr — Sex (14)
ds,: 1 . .
— _F(&,E,1,8,,)E 1
S = LF( & 1,808 (15)
dSex : 2 2
ST O, Et,8)); S = —|¥Y'In|¥Y|” = —tr(plnp) ,

(16)
where S,; - the entropy production of the MMR motion;
Sex — the entropy exchange between the MMR and fluid
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medium; S; - the entropy of fluid medium (von Neumann where

entropy); T - the temperature (constant); m,y — real ¢

constants. 1w}
Kx: ﬁ/ (5 é,T)dT—EE

Remark 2 In Eq. (11) we have the wave quantum me- 0

chanics description with dissipative processes and entropy (& B )
production from a MMR motion on the classical level

=3me (1) — 3 mafe (1);

(Newton mechanics and phenomenological thermody- &+ yé + F(¢, é t) + wié =0,

namics description), and coupled with dissipative pro- m. my

cesses in a fluid medium on the quantum macrophysics L(t) = 7 E(t), My(t) = rE (21)
level. Equation (10) for MMR motion includes the entropy 41 12

S as a scalar parameter. The entropy production S, in p— m 00— ( ' ﬁ )

Eq. (15) describes dissipative processes in MMR, deter- T ok - 4 ’

mined from phenomenological thermodynamics, and de-
fined as a single valued function of parameters in Eq. (10).
The entropy production S; of MNR in a fluid medium 0
described on the quantum level using the density matrix p W (x,t,E())= < )
and wave function W(x, t) (von Neumann entropy) as the

then the soliton-like solution has the following form

solution of Eq. (11). If the coefficient of dissipative [ 1
processes y = 0 then from Eq. (11) we obtain the result X (exph m(x—¢) —Emy(x <) ]
of paper [12]. If dissipative processes (F(-)) in Eq. (11) T,
are F(-) = 0 then we obtain the result of paper [15]. - EQ(X— <)

The system of Egs. (10)-(16) describes cooperative -,
correlations between classical (MMR) and quantum i . 1 N
macrophysics (a fluid medium) levels with an entropy X€XpY % / (¢, ,T)df—ihwo (E)t
exchange in a non-equilibrium dynamic behavior of the Lo
interaction of the MMR with the fluid medium. x (¢, (x—E(1))) (22)
3.2.4 where function qbn satisfies the differential equation
The analysis of mobile micro-robot FRRE ¢

and quantum fluid medium motion
The system of Egs. (11), (12) is the system of coupled non- 2m d)’z
linear Shrédinger equations with cubic non-linearities, n=
and has a solution as local solitons. The vibration of the

MMR in the fluid medium as the solution of Egs. (10), (11) ) ) )
influences on a wave function W(x, &, 1) (as the solution of Remark 3, In th'e solution (22) the trajectory ¢(7) des‘crlbes
Eq. (11)). In an initial state the MMR has a coherent state the MMR’s motion on the classical level. The modeling

¢n_8n¢n7 &n = |:n+%:|hga
1,2,...,y=x—¢(t) . (23)

in according to the classical equation of motion as: example of a spatio-temporal motion of the fluid medium
2 whin i[lhe. MMR is located f1nhthe 111.11t1a1.sta}t1e and colg.lpled
_ _ g X with the inner structure of the soliton is shown in Fig. 5a.
Px 1) = (x¥(0)) = [anz]i exp {Zko } (17) In this case the cooperative effect between the MMR and
fluid medium is displayed in the soliton structure of the
and Eq. (12) has a solution as local soliton fluid medium. The dynamic behavior of the MMR is shown
in Fig. 5b. The center of the soliton moves on a classical
a(x,t) = [Nuexp{—Zt}] exp[i(kx — wot)] (18) trajectory. The control motion of wave packet in the
’ cosh[(u/Ro) exp(—Zt)(x — xo — vt)] presence of dissipation as F(x, t,) = |‘~I‘| is dlsplayed in
L Fig. 5c. The projection on the (|¥|* — x)-plane is shown in
where p(x, 1) = o exp(—Z2t), po = zjf(;) N, Fig. 5d. In this case (using the effective Hamiltonian in the
N= f:j’: |o(x, t)|* dx, N - the occupation number of absence of an external force) the Schrédinger equation is

interacting quantum modes, k — wave number. 9 K o2
Equation (11) is the non-linear dissipative Schrédinger- i#i—Y¥(x,t) = — — e Hlm — ¥(x, 1), (24)
type equation and has in this case a soliton-like solution ot . Ox
(as a result of a cooperative effect of correlation between and for the final state (17) gives the solution
classical and quantum levels). We found the solution as

kotz1\ 2
lP:I\IGXP(R‘FZM), )Nc:x—é(t) . (19) |\P(x t)|2 — 1 ex (x rtn )
. ’ i 2 tzﬁ
If we introduce the ansatz [15, 17] [dz ztmfd) } [d (2md)® }
M(t,x,8) = Ki(t) + Le(D)% + Myx® = M(X, 1) (20) (25)

R(t,x,¢) = —(P(x — 5(t)) = —Px’ = R(%,1) , Here
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Fig. 5. a Spatio-Temporal motion of fluid medium, b Solitonlike spatio-temporal motion of MNR in dissipative nonlinear medium,
¢ Motion wave packet in presence of dissipation, d Projection of motion on |¥|* — x plain

m(1— exp(=3))
7 ;
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The suppression of the wave packet spreading by dissi-
pation possibly provides a mechanism to localize a
quantum particle. The finite value of the width of the
damped particle wave packet for t — oo leads to exactly
the same final value for the uncertainly product of the
damped free particle (see Appendix). For this case the
Heisenberg uncertainty principle is

tz

1 2 1
(AN AP?) = (1% /) =
By y — 0 we obtain
. 2 IR T l 20} 10)2 _l 2
lim {Ax")(Ap") = lim = (A /) = . #° .

The soliton-like solution (22) has Gaussian form and is
moved along this classical trajectory of MMR without
damage of the soliton form. The qualitative soliton form
solution is similar to Davydov soliton, but in this case the

MMR is found in the soliton body and is moved together
with the soliton. Thus, the control vibration of MMR
creates a “fur-coat” in the form of the soliton (a cooper-
ative effect between quantum and classical levels creates
the possibility of artificial life of biological MMR). In this
case the force F(&, ¢, ¢, S) plays the role of a molecular
displacement in a phonon mechanism. The collision of
solutions occurs in this case without a damage of the
structure.

4

The thermodynamic analysis of dissipative evolution

processes in cooperative system

The thermodynamic model that equivalent to Egs. (10),

(11) has the form [17]:

.1 1

p = H pl+7D(p,8) = [H,p] +7(S = (S)1)p ,
(26)

dS/dt = —a(dV/dt),o = (1/T), where V is the Lyapunov
function of the MNR model (10).
In the case of thermostat Eq. (26) obtains the form
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=+ [H, p]
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If dS/dt = 0, then we obtain the result of the paper [9].
From Egs. (10), (14) and (15) we can obtain thermo-

dynamic stability conditions of the MMR In this case

the Lyapunov function [17] is V =1 (37, ¢? + $).
Then the relation between the Lyapunov function,

the structure of MMR (as a mechanical system) and the

entropy exchange are as follows [17]:

dv,
Zék{ éét5)+d—é}

dS,, dSe
RACY

From Eq. (28) we obtain the thermodynamic macroscopic
condition of the MMR stability in a non-equilibrium state:

dSp,r  dSex
Zék[ fétS)-F :| (Sex_spr)<d—:_ dt)

(29)

(28)

From Eq. (29) follows that an unstable dynamic system as
MMR in a quantum fluid medium can be transferred into
stable state by using only non-mechanical quantity as
entropy production (intelligent control level).

5

Conclusion

The interrelation between the Lyapunov function and
entropy production rate is the background for the design
of smart control algorithms including micro-nano-robots.
The soliton motion of a MMR in a quantum fluid medium
is described. We introduced the phonon mechanism
analogy of a soliton excitation on the basis of a soft
computing control of biological vibration not only for
MMR’s transfer without loss of energy but also for a
transport of the MMR itself in a soliton body in biologi-
cally inspired evolution system. The MMR’s control
mechanism based on the soft computing is described.

Appendix

Mathematical background of Lie-admissible representation
of dissipative systems

We will discuss here an inner representation of compo-
nents in an open system in the terms of the Lie algebra.
Commutating operator [A, B] of any operator A with
Hamiltonian Hy(B = Hy) in the Heisenberg representation
descrlbes the evolution of observable A as

= (—i/f)[AHy — HoA). Santille [14] suggested Lie-
admlsmble representation as A = (—i/#)(A, Hy), where
(A,Hy) = ARH, — HyTA, Hy = H; (Hermitian operator),

R=R",T=T" R # &T. In this case the Hamiltonian H,
describes all potential forces and non-Hermitian operators

R and T describe non-conservative forces. For R = 4,

T = u (where A, u are c-numbers) we have Lie-admissible
representation. Generalized Lie-admissible description of a
temporal evolution of an observable introduces two non-
unitary operators of the temporal evolution U, and U_ in
Schrédinger representation. This two U} and U_ opera-
tors describe a motion in direct and indirect directions.
Then two Lie-admissible Schrédinger-type equations
(0¥ /0t) = HyT'V and —ifi¥(0/0t) = WRH, describe
a motion in direct and indirect directions in time. In
Heisenberg picture of the representation the observable
commutation relation (A#,A") = A’RA" — A"TA* =
ifiS*'(t,A), where $*'(t,A) describes Lie-admissible tensor
in the operator form. For T = $~! and

Lgj, px] = qipx — prqj = 0k S(q, t) we have Fips (1960)
non-canonical commutation relations. Possible forms for
S(q,t) are following:

S(qa t) = eXP(_Vt)§ S(qv t) =1+ )“q;
S(g, 1) = [exp(yt) — K2g?]

Usually for Hermittian operators ii £ and Hamiltonian as
(ifiZ — H) we define a set of new operators p(t) with
commutation relations in Lie-admissible representation:
(ii& — H, p(t)). This commutation relations are equiva-
lent to the pair of Lie-admissible commutating operators:
(ih&,p(t)) = (H,p(t)). There are two pairs of operators
(R,T) and (R, T') that

ifi (%R’p(t} —p()T %) = HRp(t) — p(¢t)TH .

For R' = T" = 1 we obtain the equation of Santille [14] as
ifza%—(tt) = HRp(t) — p(t)TH, that is a genotopic equation in
the Heisenberg form representation of motion.

Thus we described the new models of Lie-admissible
representation of non-linear quantum mechanics.

Example Al. Discrete time-independent Schrédinger-type
equations

%[‘I‘(t) —W(t— 1)) = H¥(t) | (A1)
Zlfo [P(t+10) —W(t—10)] = HY(2) , (A2)
P (et w0) — ()] = H¥ () (A3)

describe delay processes, oscillation processes and pre-
diction processes accordingly.
For the Eq. (A1) the operator H is

A— zh L ity H
T() fi

—harctan H f 1+T°H2
- To h 2‘[0 flz

)= HY(1).

Define Q-derivative as in [7]



(Qt) (1)
. Qf(%) ~ L plt) =
= lhm‘{l(t) - H‘P(t) . ( :

For the operator i#iD; and t the non-canonical Q-com- p(t) = (—Z—HR 1 - —(HR) p(0)

1+1—HR> K (0)(1— —TH) .

1— z—HR) <1+1—TH)

mutation relation is feasible

ifi(Dot — QtDq) = ifi .

)
Schrédinger-type equation with Q-derivative with Hamil- .To _ _(2) .
tonian Hq = i(fi/tInQ)In(1 — £(Q — 1)H) is non-Hermi- ol TH +4/1 P (TH)* | (respectively) .
tian. This equation is the Lie-admissible representation
has the form:
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Simultaneously, these approximate solutions are exact

a\{] . . . .
iha — HTY , solu&u;ns fo(r the f;)llowmg equations [7]
L plt) —plt—19 . B
where 1h? = HRp(t) — p(t)TH
ih l’Eo
In (1 —1H> — B0 HRp (1) TH;
=g+ 5@V SRl
1 L P+ 70) — p(t
“ho {( )—i—l—(Q— 1)2H zhw:HRp(t) — p(t)TH
Q 2% To
2 .To
—i%(Q— 1)3H2+~-~] . + i HRp(t)TH;
Thus a modified Schrédinger-type equation with Q- ., p(t+10) — p(t — 7o) _ ﬁ
derivative has the Lie-admissible isotopic representation. 7 270 = HRp(t) 7 (TH)?

For operators (A1)-(A3) we have a symbolic map

2
i 0 1= DR p(0)TH
—|1—exp|—1 2 :
%o ( P[ " atD fi
ih 0 0 By 79 — 0 we obtain Schrddinger-type equations of non-
o 9 27 €XP|Tog | —€XP|~Tog, (A1) relativistic quantum mechanics.
—
ot _ifi h Example A2. Unsharp reality and joint measurements in
T 1 sinh 7 ot artificial life of MMR.
i 0 ) In this section we will discuss a new approach to the
7o €XP|To5;| — analysis of uncertainty relation in parameter measure-
. . . . ments of MMR’s motion by interaction with a quantum
with non-canonical commutation relations: macrophysics level. In Eq. (11) we defined the parameter
- ey L = (x — &) as the nonaccuracy parameter and defined a
o <1 —€ dt) I =e P domain of the measurement accuracy as Ax > L. In this
- case p = —ifi(d/dx) is replaced by the representation
isinh %o 4 t| = coshty— d ﬁ — st = Pcos‘(Lﬁ/fz). Then the new commutation rela-
| o d dt’ tion is [, p| = ifi(cos(Lp/h) — (Lp/#) sin(Lp/#)). Consider
M1 . the following differentiation operator D, = 3 cosito 5,
— <eT° - 1) , t] = el | where parameter 7y has a time dimension and character-
LTo izes a time measurement interaction of MMR with a

For the (A1)-(A3) and (A4) operators we obtain a genotopic quantum level. Schrédinger-type equation in this case is as
equation in the Heisenberg form representation of motion: follows

,‘hw = HRp(t) — p(t)TH; ihD,, ¥ = iﬁ%cosﬁ(to = %)‘P = H(L)¥Y and
0
p(t+ %) — p(t) P Ip
i T T PV HRp(t) — p(t) TH; _ b alp
. p(t) — p(t) H(L) = Hy + —sin’ == .
g p(t+10) — p(t —t0) — HRp(t) — p(t)TH . If we introduce the definition as E = ih% then

27 ifi L cosfitgd = Ecos® — H(L) and

For small 7, these equations have approximate solutions as zh% = @(H(L), ro)(p' = H,To \A'rhe‘re T = Ho’l(p(I-{(L), 7).
follows In this case we obtain Lie-admissible representation of
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Schrédinger-type equation with unsharp measurement
parameter L. For a harmonic oscillator like a MMR
-2

H(L)—zmcos h—}—zwx andth
we obtain p-presentation

h2w2 d2 p2 LZ

— 4+ E—"— WP (p) =0
(m 2 dp2+ 2m+2mth )¥(p) ;

that is, we obtained anharmonic oscillator. In this case the
Hamiltonian operator H(L) = Hy — (p?/2m) sin®(Lp/#) is
a function of moment p and has dissipative character.
Thus, introduction of unsharp measurements as a measure
of parameter L transfers the Schrédinger equation in a
class of dissipative models.

Generalized Heisenberg uncertainty relation for this
model class has the form

fi 2, o
where E, = E,(L,S) is energy levels of Hamiltonian
operator H.
For anharmonic oscillator and S = const we have

1\ 3 1
E, = o (n + E) + Emsz2 <n2 +n+ 5) + O(L*)

and by L — 0 we obtain E, = fio(n +3).

References
1. Benioff P (1998) Quantum robots and environments, Phys
Rev 58A, 893-904
2. Bolterauer H, Tuszynski JA, Sataric MV (1991) Froélich and
Davydov regimes in the dynamic of dipolar oscillations of
biological membranes, Phys Rev 44A, 1366-1381
3. Christiansen PL, Scott AC (eds) (1991) Davydov soliton re-
visited: self trapping of vibrational energy in proteins, NATO
Advanced Study Institute, Ser B: Physics. Plenum Press, N.Y.
vol 23
4. Fujiwasa I (1994) Medical applications of micromachine
technology, J Japan Soc Mech Eng, 97, 311-314
5. Fukuda T, Kawamoto A, Arai F, Matsuura H (1994) Micro
mobile robot in fluid 1st report, Mechanism and swimming
experiment of micro-mobile robot in water, Trans Japan
Society of Mechanical Engineers, 3, 995-996; Fukuda T, Ka-
wamoto A, Arai F, Matsuura H (1995) Micro mobile robot in
fluid 2nd report, Acquisition of swimming motion by RBF
Fuzzy neuro with unsuperwised learning, Trans Japan Society
of Mechanical Engineers, 61, 274-279; Fukuda T, Kawamoto
A, Shimojima K (1996) Micro mobile robot in fluid, 3rd re-
port, Steering mechanism and swimming experiment of mi-
cro-mobile robot in water, Trans Japan Society of Mechanical
Engineers, 240-247
6. Ishihara H, Arai F, Fukuda T (1996) Micro mechatronics and
micro actuators, IEEE/ASME Trans on Mechatronics, 1, 68-79
7. Jannussis A (1985) Difference equations in the Lie-admissible
formulation, Lett Nuovo Cimento, 42(3), 129-133; and (1986)
New derivative models for small dimensions, Hadronic J.
Suppl., 1(2), 239-262
8. Kitahara T (1994) Micromachine technology in the industrial
science and technology frontier program, J Japan Soc Mech
Eng, 97, 905(4), 268-271
9. Korsh H]J, Steffen H (1987) Dissipative quantum dynamics,
entropy production and irreversible evolution towards equi-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

librium, J Phys 20A(12), 3787-3803; and (1992) Dissipative
quantum dynamics: solution of the generalized von Neumann
equation for the damped harmonic oscillator, ibid., 25(7),
2043-2064

Nicolis G, Prigogine I (1977) Self-organization in non-equi-
librium systems, J. Willey, N.Y.

Petrov BN, Goldenblat II, Ulyanov SV (1982) Advanced
control quantum and relativistic dynamic systems, (in Rus-
sian), Moscow, Nauka Press; and Goldenblat II, Ulyanov SV
(1979), Introduction in relativistic theory and its applications
in advanced technology, Moscow, Nauka Press

Ravazy M (1987) Wave equation for a dissipative force
quatdratic in velocity, Phys Rev, 36A(2), 482-486; (1990)
Equation of motion approach to the problem of damped
motion in quantum mechanics, Phys Rev, 44A(3), 1211-1217
Saif M, MacDonald NC (1996) Planatory of large MEMS,

] Microelectromechanical Systems, 5(2), 79-97

Santile R (1982) Foundations of theoretical physics, Springer
Verlag, N.Y.

Schuch D, Chung KM, Hartmann H (1983) Non-linear
Schrodinger-type field equation for the description of dissi-
pative systems. 1. Derivation of the non-linear field equation
and one-dimensional example, ] Math Phys, 24(6), 1652-
1660; Schuch D (1997) Nonunitary connection between
explicitly time-depended and nonlinear approaches for the
description of dissipative quantum systems, Physical Review,
55A(2), 935-940

Serry FM, Waliser D, Maclay (1995) The anharmonic Casimir
oscillator (ACO) - the Casimir effect in a model microme-
chanical system. ] Micromechanical Systems, 4(4), 193-205
Ulyanov SV (1989) Stochastic and fuzzy models of relativistic
and quantum dynamical systems: physical peculiarities of
control objects, In: Fuzzy Support Decision-Making, (in
Russian), Kalinin State Univ. Press, pp 15-28; Ulyanov SV,
Yamafuju K, Fukuda T, Arai F, Rizzotto GG, Pagni A (1995)
Quantum and thermodynamic self- organization conditions
for artificial life of biological nano-robot with AI control
system (Report 1). Quantum motion and thermodynamic
stability, IEEE Forum on Micromachine and Micromecha-
tronics, Nagoya, Japan, pp 15-24; Ulyanov SV et al. (1996)
Quantum and thermodynamic conditions for artificial life of
biological mobile micro-nano-robot with AI control (Report
2), 7th Int. Symposium on Micromachine and Human Sci-
ence, Nagoya, Japan, pp 241-248; (1992) Dynamic systems
with fuzzy and random time-variant structures (stochastic
vibrations, coherent states and solitons in classical, relativ-
istics and quantum control systems), Eng Cybernetics, 15,
3-145

Ulyanov SV et al. (1998) Physical limits and information
bounds in micro-control. Part 2: Quantum Soft computing
and quantum search algorithms, In: 9-th Intern. Symp. on
Micromechatronics and Human Science (MHS’98), Nagoya,
Japan, pp 126-132; Ulyanov SV, Yamafuji K, Ulyanov VS,
Kurawaki I, Hagiwara T, Panfilov SA (1999) Computational
intelligence for robust control algorithms of complex dy-
namic systems with minimum entropy production. Part 1:
Simulation of entropy-like dynamic behavior and Lyapunov
stability, ] Advanced Computational Intelligence, 3(2),
82-98; Ulyanov SV, Ghisi F et al. (1999) Simulations of
Quantum Algorithms on Classical Computers, Polo Didattico
e di Ricerca di Crema, Crema; Ulyanov SV (1999) Lectures on
Quantum Computing, Yamaha Motor Co. Ltd. Publ,, (Japa-
nese Translation of M. Yamaguchi), Iwata, Japan; Ulyanov SV
et al. (1999) Advanced Intelligent control systems in non-
linear mechatronics and robotics: From macro-to-micro-
systems, Proc. of European Conference on Circuit Theory and
Design (ECCTD’99), Stresa, Italy, Vol 2, pp 983-986

Xiao J, Yang L (1991) Thermodynamic properties of a-helix
protein: a soliton approach, Phys Rev, 44A(12), 8375-8379



