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Principle of minimum entropy production in applied soft computing
for advanced intelligent robotics and mechatronics

V. S. Ulyanoy, S. A. Panfilov, S. V. Ulyanov, L. V. Litvintseva, I. Kurawaki, K. Tanaka

Abstract A new approach to design of smart intelligent
control systems for advanced robotics and mechatronics
is developed. The principle of minimum entropy produc-
tion in a control object motion and a control system as
a fitness function for genetic algorithm is used. Simulation
results of a smart robust control of non-linear systems
described as coupled oscillators are presented.
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1

Introduction

Conventional computing basic tools for design of indus-
trial intelligent control system includes fuzzy sets theory,
fuzzy neural networks (FNN) and genetic algorithms (GA).
Development of control systems of complex dynamic
systems motion has brought to two researching ways: (1)
the study of stable motion processes; and (2) an unstable
motion processes of complex dynamic systems.

In the first case (of stable motion) the development and
design of intelligent control algorithms can be described in
the structure submitted in Fig. 1. The characteristic feature
of the given structure is the consideration of the control
object based on fuzzy system theory as a “black-box”, and
the study and optimization of an “input-output” linguistic
relations using GA, FNN and fuzzy control (FC) to
describe the changing law of PID-controller parameters
with a minimum control error. At the small uncontrollable
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(unobservable) external excitations or small change of
parameters (or structure) of control objects such approach
guarantees the robust and stable control [2].

In a case of a global unstable dynamic control object
such approach does not guarantee stable control in
principle. For such unstable dynamic control objects new
intelligent robust algorithms based on knowledge about
a movement of essentially non-linear unstable dynamic
systems are needed [4]. The structure of the intelligent
robust control algorithms in general form for unstable
dynamic control objects in Fig. 2 is shown. In Figs. 1 and 2
we are used next designations: GA - Genetic Algorithm;
f - Fitness Function of GA; S - Entropy of System; S, -
Entropy of Controller; S; - Entropy of Controlled Plant;
¢ — Error; u* - Optimal Control Signal; m(t) - Disturbance;
FC - Fuzzy Controller; FNN - Fuzzy Neural Network;
FLCS - Fuzzy Logic Classifier System; SSCQ - Simulation
System of Control Quality; K - Global Optimum Solution
of Coefficient Gain Schedule (Teaching Signal); LPTR -
Look-up Table of Fuzzy Rules; CGS - Coefficient Gain
Schedule k = (k;, ks, ks).

This approach was firstly presented in [2, 3] as a new
physical measure of control quality for complex non-linear
controlled objects described as non-linear dissipative
models. This physical measure of control quality is based
on the physical law of minimum entropy production rate
in intelligent control system and in the dynamic behavior
of complex control object. This physical measure of
control quality was used as a fitness function of GA in
optimal control system design (see, Fig. 2, Box SSCQ).

The introduction of the new physical criteria (the
minimum entropy production rate) guarantees the stabil-
ity and robustness control of unstable objects [4]. This
method differs from aforesaid design method (see, Fig. 1)
in that a new intelligent global feedback in control system
is introduced. The relation between the stability of control
object (the Lyapunov function) and controllability (the
entropy production rate) is used. The basic feature of the
given method is the necessity of approximate model
investigation for control object and the calculation of the
entropy production rate through the parameters of the
developed model. The method of the accuracy evaluation
for a model approximation using the entropy approach
in [3] is presented. The integration of joint systems of
equations (the equations of mechanical model motion and
the equations of entropy production rate) enable to use the
result as the fitness function in GA.

The general approach to design method of robust in-
telligent control for complex non-linear unstable control
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Fig. 1. Structure of Al control system (Designation see in text)

objects based on soft computing (using the principle of
minimum entropy production rate) is described. The
results of entropy-like dynamic behavior modeling of the
typical Benchmarks of dynamic control systems are
presented.

2

Entropy production of the relaxation irreversible
processes in closed dynamic systems

We will use the phenomenological thermodynamic
approach developed in [2] for the analysis of any class of
the dynamic control systems described by nonlinear
dissipative differential equations. Let us investigate the
relations between the notion of the Lyapunov function,
entropy production rate and the physical realization of
approximate mathematical models describing irreversible
processes in closed nonlinear dynamic systems.

From the thermodynamic standpoint consider two
cases of behavior of dynamic systems [2]: irreversible
processes of generalized forces, and irreversible processes
of generalized coordinates. Begin from the first case.

2.1

Entropy production in irreversible processes

of generalized forces: generalized case

Let us consider the motion of the dynamic system
as a relaxation process described by the generalized
equation [2]

where X, are generalized forces, y = (y1,¥2,...,y,) is a
vector of generalized coordinates, y = (y,,...,7,) is
a vector of generalized velocities, T is a temperature.

In Eq. (1) we suppose that a vector-function f,(...) is an
analytical function and admits the expansion in an
absolutely convergent power series. In such an event

fa(y,9,T)

— o+ Y Y+ > ohyyk+ > oGyt +
i ik ik,p

non-dissipative

+ DB Bt ) viydet o (2)
i ik

ikp

dissipative

On this assumption the expansion in Eq. (2) is an
absolutely convergent power series. Introduce some
designations:

Fa(y,T) = og + > alyi+ > cbyyi+--,  (3)
i ik

Yay. 3. T) =D By + ) B+ (3a)
i ik

Obviously that ¥,(y,0, T) = 0. We can transform Eq. (1)

in accordance with Egs. (3) and (3a) to

Xo=F,(y,T)+Ya(y,y,T) . (4)
If the system (1) has been in a state of equilibrium, then
X, =F,(y,T) . (5)

If the relation of Eq. (5) does not hold with X, = const or
if X, = X,(t), i.e. dependent from time ¢, then we must
have much more generalized relations from Eq. (4). One
can see from Eq. (4) that a generalized thermodynamic
force X, is the additive function consisting from two parts:
a “reversible” part X! = F,(y, T) and an “irreversible”
part X" = W,(y,y, T). Thus according to the phenome-
nological thermodynamics, we define the entropy

X, =fuly,y,T), a=12,....m (1)  production rate as the following:
FLCS SSCQ
Calculation of
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Fig. 2. Structure of self-organi-
zation Al control system with
the physical measure of control

quality (Designation see in text)



YTy, >0 .
(6)

Considering that T > 0, from Eq. (6) we get the following

thermodynamic conditions for the physical realization of a
nonlinear dynamic system (4)

R ZCTI 9, T)y, >0,

ayna)}la'-

_%Za:q’a(yl,...

V}lk & }.}i .
(7)

Specifically, if the function W,(...) is a linear function,
then the thermodynamic criteria (7) offers to the
requirement of the positive-definite quadratic form.

It must be pointed out that the equilibrium in Eq. (4)
must be able to admit the following written form

3F(y, T)
e (8)

that is X, in (8) must be a potential force. In Eq. (8) the
function F(y, T) is a free energy of the system (1).

Notice that only with all of above listed thermodynamic
restrictions the initial system (1) can be physically
realized.

Let us consider without the restriction of a generality
that X, = 0. In this case we deal with the relaxation of
generalized coordinates y; and the relaxation process is
described by the following equations:

Fﬂ(y? T)+lPa()/7))v T) =0 (9)
i.e., we deal with the isothermal relaxation. The relaxation

is an irreversible process and must fulfill the following
equality

dsS 1 . .
Vi \Pa 3 7T ’
ar =72 Pl T > 0

i.e., during the relaxation we get an increase of entropy
with the decrease of entropy production.

7)/1’17)./17"'

X, =F,(y,T) =

T = const

(10)

2.2

Interrelation between entropy production and Lyapunov
function of irreversible processes in closed systems
Suppose that in the considered domain of variable change
(y,y) we have the inequality: F > 0. Identify in this
domain the free energy F with a Lyapunov function V,
e, F=V.

Theorem With the above assumption the entropy pro-
duction ¢ = d;S/dt in a relaxation process of the system
(1) and Lyapunov function V have the following correla-
tion
1dv
0= ——=— . 11
T dt (1)
Proof. According to Eq. (8) the correlation in Eq. (9)
can be rewritten as

FOD) .5, 1) = 0

e T = const .

(12)

After multiplying both parts in Eq. (12) by y, and calcu-
lation on index “a” we obtain the following equation:

Z [%ya +Y¥Y.(»,y,T)y,| =0, T =const .
(13)

We can write

dl — al y  — ai Y (14)

dt - ayaya - ayaya )

1
s 43

Z‘Pa(y 3, T)y, = T— =To .

Therefore, Eq. (14) can be written in the following form

1dv (15)
0= ———
Tdt ’
i.e., Eq. (11) Q.E.D.
The Eq. (11) is one of generalization in the stability
theory of a relaxation process.
This relation is a result of an irreversible process in
relaxation of thermodynamic forces.

23

Entropy production in irreversible processes

of generalized coordinates

Let us consider a dynamic system with generalized
coordinates x; described as the sum of a “reversible” xj
and an “irreversible” x}f parts,

(16)

T ir

Let that for isothermal process (T = const) indicial
equations can be described as the following: for reversible
equilibrium parts of generalized coordinates as

Xp=Y AyX;
j

and for irreversible non-equilibrium parts of generalized
coordinates as

dx
o (18)

We suggest that for coefficients Ay in Eq. (17) and a
function f in Eq. (18) the following relations are true

> AgXiX; > 0, £(0,0,...,0,T) =0
kj

(17)

= fiX1, Xp, o, X, T)

A = Ajk,

(19)

After differentiation of Eq. (16) in time and according to
Egs. (18) and (19) we can obtain the following kinetic
equations for the isothermal process

dx
k Z k] dt +fk(X1,X2,...,Xn,T) .

(20)

According to the definition of generalized thermodynamic
forces and corresponding to them generalized coordinates
the entropy production rate is equal to
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According to the second law of thermodynamic an entropy
production rate ¢ connected with an irreversible process
must be positive. Equation (21) is true for T > 0. Thus the
kinetic equations (20) are true if for the functions f(...)
the relations (19) are true. It is a requirement of the
thermodynamic criteria of physical realization for a
mathematical model to be described as an irreversible
process, in control objects.

3
Relaxation irreversible processes with entropy exchange

3.1

Entropy production in kinetic equations

of relaxation processes

Consider the case when an entropy production is a scalar
parameter in kinetic equations of relaxation processes.
The physical meaning of this case was discussed in [2]. For
an adiabatic isolated system generalized thermodynamic
forces can be described as

30 40

dSfdt

o 2 N WA O

N

25
b 25,

X = F(x,x,S) , (22)
where S is an instantaneous value of an entropy. For
analytical function F(x,%,S) as for Eq. (4) we can
write

X = F'(x,S) + F"(x, %, S) (23)
where a “reversible” part X" = F"(x, S) and an “irrevers-
ible” part X" = F"(x, x, §), and, what’s more,

F"(x,0,S) = 0.

The general system of equations describing compound
parts “mechanical + thermodynamic” behavior in dy-
namic systems carried out as following:

oo s 1 ., . ..
X=F(x,8) +F'(x,%S5), 5= =5F (x% ),
T = ¢(S) (the terminal thermodynamic relation),

XF(x,%,8) >0 (the physical restriction) . (24)
The solution of Eqgs. (24) includes a history of entropy
S-evolution and describes an evolution of system (24)
taken into account a self-degeneracy with increase of the
entropy motion.

Example Let a dynamic system has kinetic energy Ty and
potential energy U, and its dynamic behavior is described
by Lagrangian equations as

20 30 40
Time

Fig. 3a-d. Dynamic (a, b) and thermodynamic (c, d) behavior of nonlinear system described by (26) with different dissipative

parameter K;
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Fig. 4a—f. Simulation results of dynamic and thermodynamic behavior of swing system

d 0Ty

dr dq,

Y
aq,- o aq,

d:s I .
4 =0 =72 4Q(4.4:,9) .

+ Qi(qia qp S)v
(25)

S = F(q,T) (thermodynamic equation of coupling),
>-4;Qi(qi, g;,S) > 0 (identically) Equations (25) describe

1

the case when a heat exchange interaction between the
dynamic system and external world is absent, and
Qi(qi, 4;,S) are non-conservative forces including as a
particular case dissipative forces. In this case an entropy
production completely is caused by a self-degeneracy of a
mechanical system motion.

For the case when dissipative forces are dependent
linearly from entropy S as Q(q, 4, S) = (k + k;S)q we can

write the equation of motion for dynamic system with one
degree of freedom from Egs. (25) as following:

q + (k + kIS)q + koq =A Sinkot s
s 1
dt T
From Egs. (26) follows that the dynamic system (26)
is described by the time-variant non-linear structure.
Figure 3 shows the simulation results of an entropy
accumulation in the dynamic system motion according to
Egs. (26). They show the high sensitivity of a thermody-
namic behavior to a change of the entropy parameter in a
mechanical system motion.
Using of the entropy as the scalar parameter in a

mechanical system motion was described firstly in [2]
and was repeated in [1].

(k+KkS)g,  So=cgInT + oqo (26)
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3.2

Dynamic stability of systems with control entropy exchange
Consider a dynamic system that has an entropy exchange
with a heat reservoir (a control system). This is the gen-
eralized case of Eqgs. (24) and (25) when the entropy of the
dynamic system is S = §” — S§%, where $” is the entropy
produced by the dynamic system, and S** is the exchange
entropy with the heat reservoir. In this case Egs. (24) can
be written as

X = F'(x,S8) + F"(x,x, ),

s &S 1, . ..
stp_sex’ ﬁZE:?F”(x,X,S)x s
dse> , (28)
dt = lp(‘x7 x’ S) )

o(S,T,x) =0, xx=fi(x,S,¢) .
Consider a new Lyapunov function

1 n
\/_E<§:xﬁ+§> (29)

k=1

After the differentiation of Eq. (29) and the simple
algebraic transformation we have

dv 1 ds? ds*
oy p_ qex) (8
i k§:1 xifi(x,S,t) + (8P — S )<dt dt) (30)

thermodynamical behavior

mechanical motion

Equation (30) describes the generalized interrelation
between mechanical behavior (Lyapunov stability) and
entropy production in open dynamic systems.

4

Simulation results: intelligent control of swing system
(pendulum with variable length)

Consider the motion of the swing system under control
described by the following equations:

é+2§'9+‘%sin9:k1 ~eo+k2~ég+k3~feo dt + &(¢)
[+2ki—10° —gcosO =L (ky e+ ks - &+ ks~ [ dt + E(1))
(31)

Here &(¢) is the given stochastic excitation (white noise).
Equations of entropy production are the following:

@—2;06); 48 _ ki

— 2
dt dt (32)

The system (31) is globally unstable system (in Lyapunov
sense). Simulation results of dynamic motion under the
control are presented in Fig. 4a, b. Two types of control
approaches (with Soft Computing as GA with fitness
function as minimum of entropy production rate for SGC
of conventional PID controller, curve - 1; conventional
PID control with fixed gain coefficients, curve - 2) are
compared. The thermodynamic behavior is shown in

Fig. 4c, d, e, f where Fig. 4c, d are the entropy production
rates of state variables 0 and I respectively. In Fig. 4e, f
the entropy production rates of two PID controllers are
shown. Figure 3a and b shown that intelligent control
more robust and effective for unstable control object in
presence of random excitations.

5

Conclusions

The interrelations between the notion of the Lyapunov
function (stability conditions), entropy production
(thermodynamic behavior) and the physical realization
of approximate mathematical models describing an
irreversible relaxation processes in closed and open
nonlinear dissipative dynamic systems are investigated.
The thermodynamic criteria (as the minimum of entropy
production rate) as a physical measure for a fitness
function of GA is introduced. Design of robust intelli-
gent control of complex non-linear dynamic systems
based on soft computing is demonstrated. The
effectiveness of this approach by the simulation of
Benchmark is shown.
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