UDC 658.012.011.56 : 681.32.06

Fuzzy Models of Intelligent Control Systems: Theoretical and Applied
Aspects (A Survey)*

S.V.UL’YANOV
(Moscow)

A unified approach is considered to the construction of problem-oriented models of intelligent
fuzzy automaltic control systems (ACS) used in a variety of indusurial ficlds. Primary atlention is
devoted to a description of operaung fuzzy ACSs and controllers which have many advantages over
traditional control systems. The problems of choosing and constructing optimum fuzzy control
algorithms are discussed in detail. The problems of realizing control algorithms and controllers based
on fuzzy processors and cxperl systems are analyzed. Sample intelligent aviomated workstations
(AWS) designed by fuzzy processor and controller computer-aided design systems are given.

* %* *

INTRODUCTION

The extensive use of robotic and human-computer systems (from industrial flexible manufacturing sysiems through
medical and biological sysiems) has made it necessary [or designers 1o address the problem of improving the flexibility of
ACSs as well as the rehability (fauit resistance and survivability) of similar systems {1-3}. Improving such performance
[aciors and guality of a solution by modemizing solely the hardware of the ACS structure has at a certain stage yielded a
ugnificant improvement in the automation level of a variety of industrial processes. An analysis of the applications of
robotic systems in industry, and particularly in the nonindustrial sphere (such as biomedical systems, program-controlled
auxiliary systems for replacing lost functions, eic.) and in critical systems (including control systems for nuclear power
planis and atemic reactor diagnostic systems; control systems for pathophysiological processes; on-board spacecrall
automatic conirol systems; automated echnological process controb systems for petrolcum refining industries and other
explosion-hazardous industries, cte.} has revealed the existence of limits on the maximum possible attainability of such
characteristics in the hardware rmplementaton only. We know that improving automatic control system flexibiiity by
expanding the hardware realization will serve 1o reduce the fault-resistance and viability of the overall system, ¢te. The
formalization of human operating behavior (accounting for errors) in the corresponding human-compuier systems and
integraled automated control systems takes on an added significance. Increases in the “intelligence™ of the ACSs can b
formulated in a manner analogous Lo {4] as the principle of *‘decreasing ACS precision by increasing intelligence,”

One possible direclion for solving this problem involves reducing the level of complexity of the hurdware-software
package of the automatic controf sysiems by increasing their “intelligence’” and creating integrated “*reasoning ™ industrics
with progressive lechnology. In robotics complexes and flexible manufacturing sysiems (FMS) this is achieved by using
fuzzy controllers and artificial-intelligence ACSs [5—11], whercas in biotechnology and biomedical systems the functional
cupabilities of the homeostasis of the integraled struclures are also taken inlo account [12-13], In such intelligent systems
the controllers and decision-makers, as demonstrated in specific examples in §14-17], are realized by models of fuzzy
controllers and expert system (ES) functions employing fuzzy instructions and control algorithms, generatized fuzzy logic
inference rules, enhanced forms of deep knowledge representation and description in second generation problem-oriented
capert systems. The formalizaton and qualitative interpretation of descriptional adequacy of fuzzy controilers are based
on linguistic approximation procedures, the resolution of logic syllogisms, and a structural analysis of fuzzy relations and
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solutions of roughly corresponding multidimensiconal fuzzy controis using the principle of maximum {minimum) entropy
[14). The degree of complexity of the structural realization and the corresponding software-hardware package is reduced
by cmploying adjustable VLSI microprocessor modules aslinguistic processor prototypes of sixth generation fuzzy reasoning
computers {9, 13, 18-21]. Between 16 and 64 logic rules {using 2.5-1t fabrication technology) or up t0 256 logic rules (using
1.25-p technology) can be realized on a 6 x 6 mm chip containing 8300 transistor elements fabricated by CMOS-1echnology.
The reasoning speed in this case is 8- 10* logic rules per second (the reasoning speed today has attained 10° logic rules per
sccond); up to 117 rules are handled in real time by parallel processing, and both analog and digital integrated circuits arc
wscd for the hardware realization of the processor [9, 18-21]. Designer automated workstations {22~24] for designing logic
controllers consisting of fuzzy VLSI processors [25-39] have been developed. Subsequent development of VLSI fuzzy
processors involved analysis of computation schemes to implement multidimensional membership and parallel fuzzy
reasoning functions for multidimensional real-time multiple input-output ACSs [9, 17,26, 29, 31, 33,40-46]. Such research
in tum made it necessary to develop a new component base for fuzzy processors [47~51] that implement standard logic
fuzzy cperations and their combinations. Hence controllers based on fuzzy processors are superior to traditional P-, PI-,
and PID-conirollers in terms of transfer process quality and controllability [6-8, 10, 14~18, 34-38, 52-54]. Theoretical
research and simulation results indicate a broad range of applicability of fuzzy models of controllers and a dependence
between a priori information and the subject domain [14-17, 55, 56].

In the general case it is possible to analyze modes of dynamical control objects and ACSs by employing structural
analysis of fuzzy models [15-17, 57-68] containing fuzzy controllers on feedback connective channels. Such connectives
{as an analog of {69]) are formed in weakly structured systems by linguistic approximations of control loops and fuzzy
controllers using the principle of two-channel invariance developed by the school of Academician B.N. Petrov. In this case,
the first generalized deviation contrel channel with compensation utilizes a fuzzy controller based on the principles of
classical luzzy logic; the second generalized control and state monitoring channel of the object is designed to account for
changes in the information parameters of the state of the object under extremal cases, and utilizes a fuzzy controller with
elements of antificial intelligence in which reasoning is achieved by means of a nondistributive algebraic array (quantum
fuzzy fogic) [70]. One example of this case is a design of an intelligent ACS for an artificial lung machine [13] employing
two fuzzy controllers. The breathing loop in this case is controlled by means of the first fuzzy controller which employs
classical fuzzy logic; the second nonfuzzy quantum-logic controller monitors the interaction of the respiratory system and
the discrete states of the cardiopulmonary system (which the respiratory system is combatting) and corrects the corresponding
tables of linguistic decision-making rules. In this case, the knowledge base of the quantum-logic controller accounts for the
homeostatic capabilities of the entire body.

This paper presents a survey of the practical application of such aspects of fuzzy model theory to problems of con-
structing optimum industrial control systems for complex dynamical systems. The problems of analyzing fuzzy algebraic
and differential equations, fuzzy measures (such as fuzzy entropy) and their relation to fuzzy operators lie beyond the scope
of this paper, as do secondary issues concerning the adaptation and estimation of the sensitivity of the behavior of ACS
structures as a function of the type of fuzzy implication operator, descriptions of hardware structures of fuzzy processors
and their application in nonfuzzy expert systems; the description of fuzzy models for control of relativistic and quantum
dynamical systems (71, 72] and many other aspects. These problems are partially discussed in [19, 14-17, 70-75].

1. Fuzzy Models of Optimum Control Over Dynamical Systems Under Conditions of Uncertainty

The traditional approach o solving problems of optimum control system theory based on formal logic methods
currently employed in mathematics is used to create exact (in the broad sense) models of rigorous reasoning and inference.
In this case primary attention has been devoted o the problems of correciness, compleleness, consistency, closure, stability,
controllability, and many other qualitative aspects of a description of models of objects and controlled algorithms. The
probiem of assessing the truth of statements of logic propositions such as *‘the mathematical model is an adequate repre-
sentation of the real control object’” essentially remained open and could not be solved solcly within the framework of the
analysis method used. We have an analogy here to Godel's incompleteness theorem in arithmetic.

The construction of models of dynamical systems as control objects is one of the fundamental tasks of automatic
coatrol theory. This largely involves solving the foliowing problems [ 14, 76]: descriptions of processes that occur in objects
d ;stomatie control systems {(ACS); choosing the corresponding methods of formalizing and establishing a correlation



«mdequacy) between the models obtained in this manner and the initial object as well as the analysis methods (depending
. the level of physical and mathematical rigor). Note that the process of constructing models of physical processes is 4
«cunplex, cvolulionary process, and involves an unavoidable approximation of the actual object and will lead 10 a loss of
sduemation in the description of the object. In this case, the hypotheses and axioms employed 1o approximate and describe
a rcal object by means of a corresponding model cannol take account of all esseatial aspects of the physical process, which
kads (0 a certain increase in risk and uncertainty in describing the control object.

Estmates of the increase in such risk can be obtained based on an information approach [77]. An assessment of the
Jegree 10 which a mathematical model provides an adequate representation of an actual control object is arbitrary (relative)
w nature and is essentially dependent on the hypotheses used to describe the test dynamical system [14, 76, 78, 79]. Three
sermons are examined from the viewpoint of fuzzy model theory: 1) fuzziness of a description as an approximation of a
«cakly structured mode! of an actual control object due to its complexity and uncertainty of information on its properues,
1y ihe aclual object has an objective internal fuzziness in the description of its operation.

In the first case the estimate of the degree to which the model is an adequate representation of the actual object is
csablished by a fuzey measure of the relation between comparable systems [80} and simulation methods [14, 16,17, 81-851.
Ihus upproach is particutarly valuable in constructing knowledge-based industrial inlelligent automauc control systems that
employ corresponding anificial intelligence devices in the control loops [9, 16, 17, 73-75, 86-88].

In the second case, studies of the completeness of the corresponding estimate of the adequacy of the description of
the control object have demonstrated (70, 89-91] that the wuth of its value can only be found in the open interval (0, 1}
Thus resull means that there is a class of dynamical systems for which the truth of statements regarding the degree 10 which
systems and the system components arc adequately represented by its models fundamentally cannot adopt Boolean values
of [{5 1], It turned out that such a class of dynamical sysiems is described within the framework of quantum logic [92-95j
i which the logic connectives have cerlain differentiating features from their corresponding classical connectives [94,
Chapier 20). In this case, the class of dynamical systems described by quantum logic contains not only quantum-relativistic
control objects, but traditional control abjects as well. Examples of such systems can be found in [13, 70, 96). The last
conclusion is due to a continuous quantum-classical logic limit process (unlike the description of the corresponding
tansitions, which is a discreie transition at the physical level), i.c., there exists an analytic function p for the transition from
quantum logic to classical logic. In this case the language L, in which the quantum logic language L is embedded contains
un addition to the traditional logic connectives) an addikonat connective: the modal operaor P (**possibality’’) [97).
Iherefore, possibility theory is an inclusion o quantum fuzzy logic (70). The departure point in such research has been the
study by Birkhoff and Von Neumann [98] on the adequacy of physicat and logic levels for describing models of quanium
sy stems. These results indicate that the logic description level in some sense is broader than the physical level [70] since 1t
1 applied to a description of a broader class of dynamical systems. Such results are significant in developing space-ume
peudophysical logic [99]. One example is the problem of control over the group motion of an ensemble of independent
verucal-displacement mobile robots employing industrial manipulators under extremal conditions (such as fire-fighting
tobots in explosion-hazardous media, as well as for cleaning and deactivation of surfaces, etc. etc.) [100-103].

This paper is largely limited o the first version of analyzing fuzzy modcels of industnal automatic control sysiems.

Let us consider a possible qualilative approach to analyzing control processes over complex systems based on the
punciples of fuzzy logic [9, 4, 73-75], while the set of control algorithms will be used in a given class of fuzzy systems
{16,17,75].

The state of the complex system and the control actions are considered 1o be linguistic variables, while the specific
conurol values are chosen based on a compositional inference rule {9, 14, 74).

1.1. Primary definitions of fuzzy set theory and fuzzy logic. Here we list the primary definitions required for
presenting the fundamental results of this section,

Definition 1. Let X be a set of arbitrary nature. The set of ordered pairs {x, it, (x)}, where x € X, 1, (x) € [0, 1] for
all x s called the fuzzy subset A of X. The function |1, (x) is called the membership function and can be treated as knowledge
of the degree of membership of the element x in fuzzy-defined set A.

Siandard set-theoretic unification, intersection, and negation operations can be performed on fuzzy subsets of x:

Hays (2) = pa (£) V/ pa () = max {py (), pg (2));
Hays (£) = pa (2) A po (2) = min {p, (2}, py ()}
Ha(z) =1 —py (2),



as well as, for example, an involution operation

Ha™(z) =p.*(2) for «=>0.

A more comprehensive mathematical description of the logic connectives of fuzzy set theory from the position of
t-norms and {-conorms can be found in [104].

A fuzzy subset is called a normal subset if sup p, (x) = 1. The set of fuzzy subsets X is called a fuzzy subalgebra of

X and is denoted by F (X).

Definition 2. The ordinary (clear) set defined by the expression Y, = (y € X, iy (y) 2 a} is called the set of level X,
a € [0, 1] of the fuzzy subset Y in X and is denoted by Y,.

Definition 3. Let X be a space with the measure v (-) such that 0 < v (x) < e and A € F (X). The functional

a(d)= ! d
‘ _\»'(Tppj)_xﬂ(“"(z)) v(z), (1.1)

where the entropy A (z) == zInz— (1 - z) In (1 - 2); supp A = {x, , (x) > 0) is called the degree of smearing of {uzzy sct
A. We can easily test Eq. (1.1) for satisfaction of the following properties: 1) & (A) = 0 when and only when A is an ordinary

(nonclear) set; 2) o (A) = ( A); 3) a(A)+ a(B) = (AVB) + o (A AB); 4) o (A) reaches a maximum for | A | = % 1X1

5) If A and A* are such that
[ pa () Zpa(z), forall z, where pa(z)=

pa-(z) <pa(z), forall z, where pa(z)<

then o (A*) < o (A), which is in agreement with intuitive notions of the degree of uncertainty of situations described by
fuzzy subset A. Note that the following cxpansion is valid:

F(X)=U F(X), (1.2)

A0

where F, (X) = {A c F (X); o (A) £}, F, (X) = X. It should be emphasized that in expansion (1.2) the sets of level A will
depend on the established radius (measure) of the uncertainty o (A) in accordance with Eq. (1.1) defined by the degree of
information available to the researcher: the corresponding entropy. This approach establishes the limits on the applicability
of these modcls as measures of the adequacy of representation of the actual control objects.

Definition 4. The linguistic variable is an ordered set (5, X, T (s), G, M), where § is the variable name; X is the base

setof values of the variable; T (s) is the term-set of the linguistic variable s which is a family {X;}_, of normal fuzzy subsets
X such that k:l supp X; = X; G is the contextually-free grammar generating the set of all values of S on T (s); M are the rules
i=1

for calculating the membership function of the composite value of § from values of T (s).
Definition 5. The fuzzy subset with the given membership function i, (x, y) is called a fuzzy mapping /: X — ¥ of
sct X on Lo set Y. Note that fuzzy mapping f is in fact not only defined on X but also on F (X). If (A, p, (x)) € F (X), then

Wro(y) = v (s (X)AR;(x, )] Natrally Im f < F (Y).

The simplest example of a fuzzy mapping is the following subsct X x Y:

wr (2, ¥) = [ka(2) Az () 1V [1aa(2) A (9) ],



o A€ F(X),B,Ce F(Y).

In such a casc we can easily test the validity of the equalities f(A) =B and f( 7A)=C which yields a basis for
egauing 0 / the linguistic label: if A, then B, else C.

A somewhat more complex example is a fuzzy mapping with the properties i, (x, y) = V_(Ha, (x)ARg(¥)), where

Z, Ha, (z)=1.

T
In this case

f(A)=B,, ..., f(4.)=B.,

shxch provides a basis for assigning to f the linguistic label

if A, then B, else . . .

e (1.3)
il 4, then B,,.

Consistent with the definition provided in [14, 105] we will call the number C (f) = In (n) the computational (algo-
nthmic) complexity of mapping f.

These definitions make it possible to formulate the following primary resullts.

1.2. Fuzzy differential inclusions and optimum control processes. A variety of methods [ 106—107] have been used
w analyze the problem of control of dynamical systems under conditions of uncertainty. Here we will consider only one
punaible approach based on differential inclusion theory [108, 109] generalized 1o fuzzy systems [110-113], as yielding
the most adequate description of the behavior of dynamical systems under conditions of uncertainty. Let us assume that the
tchavior of the dynamical system is described by the differenual equations

i=[(t, z, k), (1.4)

where k is the parameter vector on the right side of the equation. In the general case, vector k is unknown and may vary
arbatrarily. In practice we often know a set K to which possible values of k € K belong. In this case Eq.(1.4) is best replaced
by the differential inclusion

=l & K, (1.9)

If different points in the set U are not equally valid as possible realizations of K, the set K can be called a fuzzy sct
{110-113]. According to Zadeh's generalization principle the function f (¢, x) is extended to the family of fuzzy sets £ (),
1 c., we obtain a fuzzy set on the right side of Eq. (1.5). It turned out to be possible to introduce the concept of solving
fuszy differential inclusion of the (1.5) type through the concept of ¥,: the set of level a. Different definitions of this concept
and its modifications can be found in [111, 114, 115).

Here we briefly consider the relation of fuzzy differential inclusion theory to the method of *“viability”” theory (113,
116] and its application to determining optimum equations [117] described by ‘‘viscous’ solutions of the Hamilion-
Jacobi-Bellman equations [118-122].

In fuzzy differential inclusion theory the “‘fuzzy dynamic’’ of the test control system with feedback of the type
x=f(,x,ux))reducesox € I (x),x € X,u e U (x) and is replaced by a fuzzy graph [9] described by the membership
function g (x,X): X XX — R, U {+eo}. In this case there exists a cost function of the control goal V: X — R, U (+<] in
which the domain of existence Dom {V}: = {x € X IV (x) < =} and Dom (V) < Dom (u (x, x)).

We introduce the expression

D, (V)(z)(u): = lim inf [V(z+hu')—V(z)]/h. (1.6)

n—ls u'=u



Expression (1.6) is called the tangential epiderivative of the function V at point x in direction u. We denote by T, (k)
the Bouligand tangential cosine defined as

Ty(x): ={g=veX| liminfd, (z+hv)/h=0}, (1.7}

n—0,

where dy (y) 1 = inf || y —z ||is the distance from y to K. The properties of the function V (x) are described by the epigraph
1 K

EP(V)‘={(x,?C)EX><R|V(J:)£J\}, A=sup inf p(z,v)<oo.

EN re‘rx (x)
Let us consider the auxiliary differcntial equation

. w(t)y=—qg(w(t)), w(0}=V{(z(0)), (1.8)
whose solution w (#) approximates the behavior of the function V as Vi > 0, V (x () s w (£).
We define the tangential cosine T, (x) of the type in Eq. (1.7) as

Tv*(z}:={veX|D,V(z) (v) +¢{V(2)) <0}. (1.9)

Then the non-negative function V with tangential epiderivative (1.6) is a Lyapunov function that is associated with the
function @ in Eq. (1.8) if and only if the function satisfies the *‘viscous™' solution of the Hamiiton-Jacobi-Beliman equation
at the tangential cosine T,° (x) (12,113, 116], i.e.,

Vz=Dom(V), inf D,V (z)(v)+e(V(z))<0. (1.10)
tEF(x)

It follows that a description of a controlled dynamical system with feedback as a fuzzy differential inclusion in which
the right side 1s a fuzzy subset with the membership function V € [0, =] and defined as a cost function reduces 10 an analysis
of the *‘viscous®’ solutions of the corresponding Hamilton-Jacobi-Bellman equation of optimum control theory. Possible
approaches to constructing solutions of equations of the (1.10) type have been considered in [118-126].

Here we define the bundle of fuzzy trajectories x () € Dom (V) having the property of *‘viability’’ in the sensc

VzeK, F(z)NT,(z)#2. (1.41)

Consequently, within the set of solutions of the fuzzy differential inclusion € F({x) it generates in the sense of
solutions (1.10) a bundle (1.11) of trajectories x (f) with the membership function V (x) describing the attraction domain
(autractor) under given initial motion conditions of the controlled system. The established relations between the
Hamilton-Jacobi (Issacs-Bellman) and Hamilton, Issacs-Bellman, Rosonauer, Pontryagin and the Krotov optimality prin-
ciple [127] can be used to extend these results to the broader class of controlled dynamical sysiems.

Let us now consider the problem of a linguistic approximation (LA) and construction of optimum fuzzy control
aigorithms for corresponding fuzzy motion trajectory controtlers for a controlted dynamical system of the type (1.10), (1.11).

We formulaie without proof the following thcorems {13, 128].

Theorem 1. Let X, ..., X, be normal fuzzy subseis of X such that:

DX, e [R(X)forVk=1,...,m2) k.J supp X, = X and s is the linguistic variabte for which {X,} are the term-sets.
k=1
Then there exists a value A* = LA (A/F, (X))} of linguistic variable 5 for Ve > 0 and VA ¢ F, (X) such thatp (A, A*) <

Theorem 2. Let f: F(X) — F(Y) be an arbitrary fuzzy mapping of the fuzzy subalgebra £ (X) on to £ (¥). Then for
Ve > 0 there exists a fuzzy mapping f,: F(X) — F(¥) of the type (1.3) such that p (£, f,) <e.

Theorem 3. Let f;: X — Y be an arbitrary mapping of the set X on to set Y. Then, for any [uzzy mapping k2 ¥ — F ()
such that ax (k) = A there will exist a fuzzy mapping f,: X — F(Y) of the type (1.3) such that:






